STARPOWER

SEMICONDUCTOR

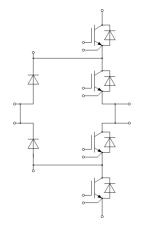
IGBT

GD225MJS120L6S

1200V/225A 3-level in one-package

General Description

STARPOWER IGBT Power Module provides ultra low conduction loss as well as short circuit ruggedness. They are designed for the applications such as 3-level-application.


Features

- Low V_{CE(sat)} Trench IGBT technology
- V_{CE(sat)} with positive temperature coefficient
- Maximum junction temperature 175 °C
- Fast & soft reverse recovery anti-parallel FWD
- Isolated copper baseplate using DBC technology

Typical Applications

- Solar power
- 3-level-application

Equivalent Circuit Schematic

Absolute Maximum Ratings T_C =25°C unless otherwise noted

T1-T4 IGBT

Symbol	Description	Value	Unit
V_{CES}	Collector-Emitter Voltage	1200	V
V_{GES}	Gate-Emitter Voltage	±20	V
I_{CN}	Implemented Collector Current	225	A
$I_{\rm C}$	Collector Current @ T _C =100°C	110	A
I_{CM}	Pulsed Collector Current t _p =1ms	450	A

D1/D4 Diode

Symbol	Description	Value	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	1200	V
I_{FN}	Implemented Forward Current	225	A
I_{F}	Diode Continuous Forward Current	300	A
I_{FM}	Diode Maximum Forward Current t _p =1ms	450	Α

D2/D3 Diode

Symbol	Description	Value	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	1200	V
I_{FN}	Implemented Forward Current	225	A
I_{F}	Diode Continuous Forward Current	225	A
I_{FM}	Diode Maximum Forward Current t _p =1ms	450	A

D5/D6 Diode

Symbol	Description	Value	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	1200	V
I _{FN}	Implemented Forward Current	225	Α
I_{F}	Diode Continuous Forward Current	300	A
I _{FM}	Diode Maximum Forward Current t _n =1ms	450	Α

Module

Symbol	Description	Value	Unit
T _{imax}	Maximum Junction Temperature	175	°C
T _{jop}	Operating Junction Temperature	-40 to +150	°C
T_{STG}	Storage Temperature Range	-40 to +125	°C
$V_{\rm ISO}$	Isolation Voltage RMS,f=50Hz,t=1min	3200	V

 $\textbf{T1-T4 IGBT Characteristics} \ \, T_{\text{C}} \!\!=\!\! 25^{\text{o}}\text{C unless otherwise noted}$

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
		I _C =225A,V _{GE} =15V, T _i =25°C		2.00	2.45	
$V_{\text{CE}(\text{sat})}$	Collector to Emitter Saturation Voltage	I _C =225A,V _{GE} =15V, T _i =125°C		2.70		V
		I _C =225A,V _{GE} =15V, T _i =150°C		2.90		
$V_{\text{GE(th)}}$	Gate-Emitter Threshold Voltage	I _C =9.00mA,V _{CE} =V _{GE} , T _i =25°C	5.6	6.2	6.8	V
I_{CES}	Collector Cut-Off Current	$V_{\text{CE}}=V_{\text{CES}}, V_{\text{GE}}=0V,$ $T_{\text{i}}=25^{\circ}\text{C}$			1.0	mA
I_{GES}	Gate-Emitter Leakage Current	$V_{GE}=V_{GES}, V_{CE}=0V,$ $T_{j}=25^{\circ}C$			400	nA
R_{Gint}	Internal Gate Resistance			1.7		Ω
C _{ies}	Input Capacitance	V _{CE} =25V,f=100kHz,		38.1		nF
C_{res}	Reverse Transfer Capacitance	$V_{\text{CE}}=23$ V,1=100KHz, $V_{\text{GE}}=0$ V		0.66		nF
$\overline{Q_G}$	Gate Charge	V _{GE} =-15+15V		2.52		μC
t _{d(on)}	Turn-On Delay Time			TBD		ns
$t_{\rm r}$	Rise Time	TBD		TBD		ns
$t_{d(off)}$	Turn-Off Delay Time			TBD		ns
$t_{\rm f}$	Fall Time			TBD		ns
E_{on}	Turn-On Switching Loss			TBD		mJ
$E_{ m off}$	Turn-Off Switching Loss			TBD		mJ
t _{d(on)}	Turn-On Delay Time			TBD		ns
$t_{\rm r}$	Rise Time			TBD		ns
$t_{d(off)}$	Turn-Off Delay Time			TBD		ns
$t_{\rm f}$	Fall Time	TBD		TBD		ns
Eon	Turn-On Switching Loss	TBD		TBD		mJ
$E_{\rm off}$	Turn-Off Switching Loss			TBD		mJ
$t_{d(on)}$	Turn-On Delay Time			TBD		ns
t_r	Rise Time	1		TBD		ns
$t_{d(off)}$	Turn-Off Delay Time	TBD		TBD		ns
$t_{\rm f}$	Fall Time			TBD		ns
E _{on}	Turn-On Switching Loss			TBD		mJ
$E_{ m off}$	Turn-Off Switching Loss			TBD		mJ

 $\textbf{D1/D4 Diode Characteristics} \ \, T_{\text{C}} = 25^{\circ}\text{C unless otherwise noted}$

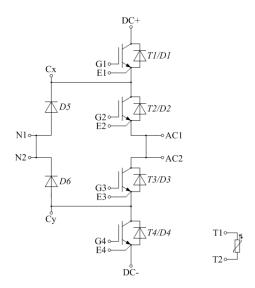
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	Diode Forward	$I_F = 300A, V_{GE} = 0V, T_i = 25^{\circ}C$		1.85	2.30	
V_{F}	Voltage	$I_F=300A, V_{GE}=0V, T_j=125^{\circ}C$		1.90		V
	voltage	$I_F=300A, V_{GE}=0V, T_i=150^{\circ}C$		1.95		
Q_{r}	Recovered			TBD		μC
Q r	Charge			TDD		μ0
I_{RM}	Peak Reverse	TBD		TBD		A
-RM	Recovery Current	TBD		TDD		
E_{rec}	Reverse Recovery			TBD		mJ
rec	Energy			TDD		
Q_{r}	Recovered			TBD		μC
- Cr	Charge			TDD		μς
I_{RM}	Peak Reverse	TBD		TBD		A
-RM	Recovery Current			TDD		71
E_{rec}	Reverse Recovery			TBD		mJ
rec	Energy			TDD		
Q_{r}	Recovered			TBD		μC
Q r	Charge			TDD		μς
I_{RM}	Peak Reverse	TBD		TBD		A
±KWI	Recovery Current			100		
E_{rec}	Reverse Recovery			TBD		mJ
rec	Energy			100		1113

D2/D3 Diode Characteristics $T_C=25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	Diode Forward	$I_F = 225A, V_{GE} = 0V, T_j = 25^{\circ}C$		1.85	2.30	
V_{F}	Voltage	$I_F = 225A, V_{GE} = 0V, T_j = 125^{\circ}C$		1.90		V
	voltage	$I_F = 225A, V_{GE} = 0V, T_j = 150^{\circ}C$		1.95		
Q_{r}	Recovered			TBD		μC
Q r	Charge			100		μ
I_{RM}	Peak Reverse	TBD		TBD		A
1RM	Recovery Current			100		Λ
E_{rec}	Reverse Recovery			TBD		mJ
Lrec	Energy			100		1113
Q_{r}	Recovered			TBD		μC
Q r	Charge			TDD		μΟ
I_{RM}	Peak Reverse	TBD		TBD		A
1KM	Recovery Current	ממו		TDD		71
E_{rec}	Reverse Recovery			TBD		mJ
rec	Energy			TDD		1113
$Q_{\rm r}$	Recovered			TBD		μC
- Cr	Charge			100		μ
I_{RM}	Peak Reverse	TBD		TBD		A
	Recovery Current			עעו		Л
E_{rec}	Reverse Recovery			TBD		mJ
rec	Energy			וממו		1113

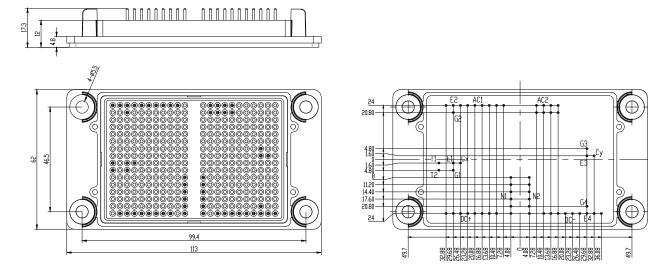
D5/D6 Diode Characteristics $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	Diode Forward	$I_F = 300A, V_{GE} = 0V, T_i = 25^{\circ}C$		1.85	2.30	
V_{F}	Voltage	$I_F=300A, V_{GE}=0V, T_j=125^{\circ}C$		1.90		V
	voltage	$I_F=300A, V_{GE}=0V, T_i=150^{\circ}C$		1.95		
Q_{r}	Recovered			TBD		μC
Q r	Charge			TDD		μ0
I_{RM}	Peak Reverse	TBD		TBD		A
-RM	Recovery Current	TBD		TDD		
E_{rec}	Reverse Recovery			TBD		mJ
rec	Energy			TDD		
Q_{r}	Recovered			TBD		μC
- Cr	Charge			TDD		μς
I_{RM}	Peak Reverse	TBD		TBD		A
-RM	Recovery Current			TDD		71
E_{rec}	Reverse Recovery			TBD		mJ
rec	Energy			TDD		
Q_{r}	Recovered			TBD		μC
Q r	Charge			TDD		μς
I_{RM}	Peak Reverse	TBD		TBD		A
±KWI	Recovery Current			100		
E_{rec}	Reverse Recovery			TBD		mJ
rec	Energy			100		1113


NTC Characteristics $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
R ₂₅	Rated Resistance			5.0		kΩ
$\Delta R/R$	Deviation of R ₁₀₀	$T_{\rm C}=100^{\rm o}{\rm C}, R_{100}=493.3\Omega$	-5		5	%
P ₂₅	Power Dissipation				20.0	mW
B _{25/50}	B-value	$R_2=R_{25}exp[B_{25/50}(1/T_2-1/(298.15K))]$		3375		K
B _{25/80}	B-value	$R_2=R_{25}exp[B_{25/80}(1/T_2-1/(298.15K))]$		3411		K
B _{25/100}	B-value	$R_2=R_{25}exp[B_{25/100}(1/T_2-1/(298.15K))]$		3433		K

Module Characteristics $T_C=25$ °C unless otherwise noted


Symbol	Parameter	Min.	Typ.	Max.	Unit
L_{CE}	Stray Inductance		15		nН
D.	Junction-to-Case (per T1-T4 IGBT)			0.231	
	Junction-to-Case (per D1/D4 Diode)			0.338	K/W
R_{thJC}	Junction-to-Case (per D2/D3 Diode)			0.373	K/W
	Junction-to-Case (per D5/D6 Diode)			0.338	
M	Mounting Torque, Screw:M5	3.0		5.0	N.m
G	Weight of Module		250		g

Circuit Schematic

Package Dimensions

Dimensions in Millimeters

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.cc), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.